Main Maths Year 6 Week 1

Day 3 Learning Question: How do I show decimals as fractions?

НООК

- **a)** Where is Sofia on the route planner? Find the location on the route planner, and describe it as a fraction of a kilometre.
 - **b)** After 15 minutes Sofia has run 1·5 km. Locate her position on the route planner, and describe it as a fraction.

HOOK - Answers

a) 0.5 is equivalent to one half.

0.5 is equivalent to a half, because five tenths is half-way between zero tenths and ten tenths.

I think you could also write her distance as $\frac{5}{10}$ km, because $\frac{5}{10}$ is equivalent to $\frac{1}{2}$.

Route	planner
*	

0	•	Tth
0	•	5

Sofia has run 0.5 km, which can also be written as $\frac{1}{2}$ km.

I.5 is equivalent to $I_{\frac{1}{2}}$ and $I_{\frac{5}{10}}$.

THINK TOGETHER 1

Jamie ran 0.7 km. Write this as a fraction.

0		Tth
	•	

I will use counters on a place value grid to help me.

0.7 km as a fraction is km.

I will use a number line to work it out.

THINK TOGETHER 2

These are the results for some other runners. Complete the table.

	- I I I I I	
Runner	Distance as a decimal	Distance as a fraction
Aki	0·6 km	km
Richard	km	$\frac{3}{10}$ km
Jamilla	km	2 ³ / ₁₀ km
Kate	km	3 ½ km

MAIN WORK Day 3

Learning Question: How do I show decimals as fractions?

1) a) Write each number as a fraction.

$$C = \bigcap_{i=1}^{n} or \bigcap_{i=1}^{n} or$$

b) Explain why C can be written as two different fractions.

2)

Draw place value counters to represent each number.

410

0	•	Tth
	•	

4	
10	

•	Tth
	•

 $2\frac{3}{4}$

0	•	Tth	Hth

 $1\frac{1}{4}$

3) Here are the results from a long jump competition. Mark each distance jumped on the number line.

Child	Distance jumped
Jamie	I-25 m
Aki	0·75 m
Ambika	I 3/4 m
Richard	1 ½ m

4) MAKING HEADWAY

Convert the fractions to decimals and the decimals to fractions.

a)
$$\frac{1}{4} = \bigcirc$$

g)
$$0.3 = \frac{10}{10}$$

b)
$$\frac{2}{4} = \boxed{}$$

h)
$$\frac{3}{2} =$$

c)
$$\frac{3}{4} = \boxed{}$$

d)
$$\frac{4}{4} = \bigcirc$$

e)
$$\frac{6}{4} =$$

k)
$$=\frac{3}{3}$$

f)
$$\frac{8}{4} =$$

$$\lim_{3 \to \infty} = 2$$

5) AIMING HIGH

Do you agree with Astrid?

I think one fifth is also written as 0.5, so it must be equivalent to a half.

Use diagrams and reasons to explain your answer as fully as you can.