Main Maths Year 6 Week 1

Day 3 Learning Question: How do I show decimals as fractions?

HOOK

1) a) Where is Sofia on the route planner? Find the location on the route planner, and describe it as a fraction of a kilometre.
b) After 15 minutes Sofia has run 1.5 km . Locate her position on the route planner, and describe it as a fraction.
a) $0 \cdot 5$ is equivalent to one half.

I think you could also write her distance as $\frac{5}{10} \mathrm{~km}$, because $\frac{5}{10}$ is equivalent to $\frac{1}{2}$.

Route planner

O	\bullet	Tth
0	\bullet	5

Sofia has run 0.5 km , which can also be written as $\frac{1}{2} \mathrm{~km}$.
b)

1.5 is equivalent to $1 \frac{1}{2}$ and $1 \frac{5}{10}$.

Jamie ran 0.7 km . Write this as a fraction.

O	\bullet	Tth
	\bullet	
	\bullet	

I will use counters on a place value grid to help me.

THINK TOGETHER 2

These are the results for some other runners. Complete the table.

Runner	Distance as a decimal	Distance as a fraction
Aki	0.6 km	$\square \mathrm{~km}$
Richard	$\square \mathrm{km}$	$\frac{3}{10} \mathrm{~km}$
Jamilla	$\square \mathrm{km}$	$2 \frac{3}{10} \mathrm{~km}$
Kate	$\square \mathrm{km}$	$3 \frac{1}{2} \mathrm{~km}$

MAIN WORK Day 3

Learning Question: How do I show decimals as fractions?
1)
a) Write each number as a fraction.

$D=$

b) Explain why C can be written as two different fractions.
2)

Draw place value counters to represent each number. $\frac{4}{10}$
$1 \frac{4}{10}$

O	\bullet	Tth
	\bullet	
	\bullet	

$2 \frac{3}{4}$
1 $\frac{1}{4}$

O	\bullet	Tth	Hth
	\bullet		
	\bullet		

3) Here are the results from a long jump competition. Mark each distance jumped on the number line.

Child	Distance jumped
Jamie	1.25 m
Aki	0.75 m
Ambika	$1 \frac{3}{4} \mathrm{~m}$
Richard	$1 \frac{1}{2} \mathrm{~m}$

4) MAKING HEADWAY

Convert the fractions to decimals and the decimals to fractions.
a) $\frac{1}{4}=\square . \square$
b) $\frac{2}{4}=\square, \square$
c) $\frac{3}{4}=\square \cdot \square$
d) $\frac{4}{4}=\square \cdot \square$
e) $\frac{6}{4}=\square$
f) $\frac{8}{4}=\square \cdot \square$
g) $0 \cdot 3=\frac{\square}{10}$
h) $\frac{3}{2}=\square$
i) $3 \cdot 2=\square$

k) $\square=\frac{3}{3}$
l) $\frac{\square}{3}=2$

5) AIMING HIGH

Do you agree with Astrid?

> I think one fifth is also written as $0 \cdot 5$, so it must be equivalent to a half.

Use diagrams and reasons to explain your answer as fully as you can.

